SUDOMATHS Seconde Mars 2024

Le jeu ci-dessous est un sudoku mathématique.

Il consiste d'abord à remplir 31 cases de la grille suivante en répondant aux questions du tableau (vous remarquerez que chaque colonne de la grille correspond à un thème vu cette année en classe de seconde), chaque réponse étant nécessairement un entier allant de 1 jusqu'à 9.

Ensuite, vous pourrez terminer le sudoku.

Rappelons le principe : un même chiffre ne peut figurer qu'une seule fois par ligne, une seule fois par colonne et une seule fois par carré de neuf cases.

Bon	courage	!

A 1	La solution de l'équation $-4x + 5 = -7$	E8	La racine carrée de ce nombre entier est comprise entre 2,6 et 2,7			
A2	La solution positive de l'équation $(2x+3)(-3x+15)=0$	E9	Résultat obtenu en simplifiant : $ (6\sqrt{2})^2 - (2\sqrt{17})^2 $			
A7	Image de -2 par la fonction f définie par $f(x) = -x^2 + 8$	F3	L'exposant dans l'écriture scientifique de 152,769			
А9	La distance AB avec $A(1; -\sqrt{5})$ et $B(-3; \sqrt{5})$ dans un repère orthonormé	F4	Le dénominateur de la fraction irréductible égale à 1,75			
B2	La somme des chiffres du nombre premier inférieur à 50 qui est un multiple de 10 si on lui enlève 1 et un multiple de 8 si on lui ajoute 1	F5	La distance entre les nombres -4,7 et 2,3			
В6	Coefficient multiplicateur associé à une hausse de 100 %	G4	Le nombre d'entiers figurant dans l'intervalle]–2 ; 5]			
В8	Antécédent positif de 0 par la fonction f définie par $f(x) = x^2 - 1$	G5	La longueur AB dans le triangle rectangle en B tel que $AC = 6$ et $BAC = 60^{\circ}$			
В9	Le plus petit entier naturel n tel que : $\sqrt{n} \ge 2.5$	G8	La solution de l'équation 2(x-1)-5=-(x+3)+14			
C2	Résultat obtenu en simplifiant : $ (2\sqrt{3} - 1)^2 - 11 + 4\sqrt{3} $	H1	L'abscisse de \overline{AB} lorsque $A(-2; 8)$ et $B(7; -1)$			
C 5	Le pourcentage d'augmentation de la population d'une commune qui comptait 450 habitants et qui a accueilli 18 habitants de plus	H4	$a \times \frac{1}{a^{-5}} = a^{}$			

Seconde C. Lainé

C6	Le pourcentage de réduction d'un prix qui est passé de 25 € à 23,25 €	Н8	La longueur AC dans le triangle rectangle en A tel que AB = 3 et BC = 5			
D5	Ordonnée du milieu de $[AB]$ lorsque $A(1;-7)$ et $B(-6;25)$	I1	$11 \qquad \frac{a^5}{a^{-2}} = a^{\dots}$			
D6	Un coefficient multiplicateur de 0,97 correspond à une baisse de %	13	La solution de l'équation $\left(\frac{3}{4}x - 6\right)^2 = 0$			
D7	La valeur de $\cos^2(x) + \sin^2(x)$ lorsque x est la mesure en degrés d'un angle aigu.	18	Le résultat affiché lorsqu'on lance le programme suivant en tapant jeu(3) dans la console :			
			<pre>def jeu(a) : if a>5 : b=a**2+5*a-2 else : b=-a**2+4*a+6 return(b)</pre>			
E1	Le nombre a tel que $\sqrt{150} = a\sqrt{6}$	19	1			
E2	Soit $\vec{u}(-2;7)$, $A(11;1)$ et $B(;8)$ Déterminer l'abscisse de B sachant que $\vec{u} = \overrightarrow{AB}$					

Seconde C. Lainé

_	Α	В	С	D	E	F	G	Н	I
1									
2									
3									
4									
5									
6									
7									
8									
9									

Seconde C. Lainé